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ABSTRACT

A new characterization of spaces having a point-countable basis is obtained.
This characterization is used in giving a simpler proof of a recent theorem
of Filippov.

1. Introduction

The following interesting theorem was recently proved by V. V, Filippov
[1, th. 1.1].

TueoreM 1.1. (Filippov). If X has a point-countable base, and if f: X > Y
is a bi-quotient s-map, then Y has a point-countable base.**

The purpose of this note is to give a new proof of this theorem which is simpler
and shorter than Filippov’s, and which provides an explicit description of the
required base for Y. Our principal tool is a new characterization of spaces with
point-countable bases (see Theorem 1.2), which may be of independent interest.

Let us briefly explain our terminology. Allmaps are continuous and onto. A map
f: XY is an s-map if every f ~'(y) has a countable base. A map f: X - Y is
bi-quotient [1] [2] if, whenever ye Y and % is a cover of f ~*(y) by open subsets
of X, then y e (Uf(¥"))° for some finite ¥~ = #. (We use 4° to denote the interior
of a set A.) No separation properties are assumed.

The class of bi-quotient maps contains all open maps and all perfect maps. It
should be remarked that Theorem 1.1 is trivial for open maps (if & is a point-

* Partly supported by an N.S.F. grant.

** Filippov actually states and proves this result with R (as it occurs in the definitions of
‘point-countable’ and ‘s-map’) replaced by an arbitrary infinite cardinal r. All results and proofs
in this paper are also valid in that generality.
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countable base for X, then f(%) is a point-countable base for Y), but for perfect
maps the theorem seems no easier to prove than for arbitrary bi-quotient maps.*
Our proof of Theorem 1.1 is based on the following characterization.

THEOREM 1.2. The following properties of a space Y are equivalent.

(a) Y has a point-countable base.

(b) Y has a point-countable cover P such that, if ye W with W open in Y,
then there is a finite subcollection & of & such that y c(UF )° and ye P < W for
every Pe F.

In Section 2 we show that Theorem 1.2 implies Theorem 1.1, and in Section 3
we prove Theorem 1.2. Section 4 contains some additional remarks.

2. Proof that Theorem 1.2 implies Theorem 1.1

Let f: X > Y be a bi-quotient s-map, and # a point-countable base for X,
Define # = f(%), and let us show that 2 satisfies 1.2(b).

Since f is an s-map, each f~!(y) has a countable dense subset, so f~(p) in-
tersects only countably many elements of #. Hence & is point-countable.

If ye W with W open in Y, then the collection &’ of all Be# such that
B f-YW)yand B 0 f~'(y) # & coversf ~'(y). Since f is bi-quotient, y € (Uf(&))°
for some finite & = &', and now ¥ =f(&) satisfies the requirements of 1.2(b).
That completes the proof.

3. Proof of Theorem 1. 2

That 1.2(a) implies 1.2(b) is clear. To prove the converse, assume that Y has a
covering 2 satisfying 1.2(b), and let us show that Y has a point-countable base.

Let ® = {F < #: F finite}. For later use, observe that Y must surely be
first-countable, for if y € Y, then {{VF)°: # €@, ye N.F} is a countable base at
y in Y.

To motivate our construction, note that {(U %)°: # €@} is easily seen to be
a base for Y, but unfortunately this base need not be point-countable. To obtain a
point-countable base, we will shrink the sets (U #)° (for # €®) in a suitable
fashion, as follows:

For each & €®, let

MF) = {AcY: Ac(VF)P, A¢ (V@)Y if6 T F},
V(F) = (U(M(F) N P)) .

* However, as observed by Filippov, a perfect map whose domain is Ty and has a point-
countable base is automarically an s-map. This follows A. S. Mis¢enko (4, th. 1),
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Let ¥ = {V(¥): # € ®}. We will show that ¥ is a point-countable base for Y.
LemMA 3.1. ¥ is a base for Y.

ProOF. Let ye W, with W open in Y. By 1.2(b), there exists an % €® such
that y e (U &)° < W, and we may suppose that y ¢ (U &)° if & T Z. Let us show
that ye V(F)c W.

Clearly V(#) = U(M(F)) = (U F)° = W.To show that y € V(F), apply 1.2(b)
again to pick an & < & such that ye(U¥)° and yeP < (UF) for every
Pe &. The latter property of &, together with the fact that y ¢ (U &)° if & S %,
implies that Pe #(#) or every PeS. Hence & < (M(F)NP), so (USL)
< V(&¥). Thus y € V(&), and that completes the proof of the lemma.

It remains to show that ¥” is point-countable; that is, if yc Y then y € V(F)
for only countably many & e®. Now if yeV(#), then y €4 for some
Ae M(F)NP; since ye A for only countably many 4 e, it will suffice to
prove the following lemma.

LemMa 3.2. If Ac Y, then A€ M(F) for only countably many F c®.

ProoF. For each neN, let @, ={# e®: card & = n}. It clearly suffices to
show that 4 € #(%) for only countably many % €®,.

Suppose 4 € #(F) for all F in some uncountable ¥ = ®,. Pick a maximal
A<=P such that Z< F for uncountably many Fe¥, and let P*
={Fec¥: Z<F}.Clearly 0 <card Z <n. If FeW¥*, then 4 € M(F) and
A& F; hence A+ (UHA)® by definition of A(F). Pick yeA such that
yE(UR)°. Let E=Y — UZ, so yeE. Since Y is first-countable, y € Z for some
countable Z = E. Now if # e€'¥*, then ye(UF)° (since ye 4 < (UF)°), s0 Z
intersects some P e.#. But Z intersects only countably many P e, and W* is
uncountable, so Z intersects some P, € # which lies in uncountably many % e W*,
Note that Py ¢ Z, since P, intersects Z while U Z does not. Let & = # U {P,}.
Then &7 % and S < F for uncountably many & e ¥, which contradicts the
maximality of 2. That completes the proof of our lemma, and thus also of Theorem
1.2.

4. Further remarks

(4.1). As the proof shows, Lemma 3.2 is valid under the following two assump-
tions on & and Y (both of which follow from 1.2(b)).

(a) 2 is point-countable.

(b) If yeEin Y, then ye Z for some countable Z c E.
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(4.2) If Y is discrete (thus surely satisfying 4.1(b)), Lemma 3.2 reduces to the
following result of A.S. Miséenko [4]: If # is a point-countable cover of a set Y
then every A < Y has only countably many minimal finite covers by elements
of 2.

(4.3) Condition 4.1(b) is clearly satisfied by all first-countable spaces and is
preserved under quotient maps [3,8.2-8.5]. Our arguments therefore establish the
following generalization of Theorem 1.1. If X has a point-countable base, and if
f:X > Y isa quotient s-map, then Y has a point-countable open cover which is

a base at every ye Y where f is bi-quotient.

(4.4) Theorem 1.2 becomes false if 1.2(b) is weakened by not requiring that
yePforevery Pe. Infact,let Y be set of ordinals [0,m, ], topologized by giving
o, the usual neighborhoods and making {a} open if & < w,. Let & consist of aly
singletons in Y and all intervals [a,w;) with « < w;. Then & satisfies the above
weakned form of 1.2(b), but Y is not even first-countable.
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