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ABSTRACT 

A new characterization of spaces having a point-countable basis is obtained. 
This characterization is used in giving a simpler proof of a recent theorem 
of Filippov. 

1. Introduction 

The following interesting theorem was recently proved by V. V. Filippov 

[1, th. 1.1]. 

THEOREM 1.1. (Filippov). I f  X has a point-countable base, and if f :  ,,Y-~ Y 

is a bi-quotient s-map, then Y has a point-countable base.** 

The purpose of  this note is to give a new proof  of  this theorem which is simpler 

and shorter than Filippov's,  and which provides an explicit description o f  the 

required base for Y. Our principal tool is a new characterization of  spaces with 

point-countable bases (see Theorem 1.2), which may be of  independent interest. 

Let us briefly explain our terminology. All maps are continuous and onto. A map 

f "  X ~  Y is an s-map if every f - J ( y )  has a countable base. A map  f :  X--} Y is 

hi-quotient [1] [2] if, whenever y ~ Y and q/ is  a cover o f f -  l(y) by open subsets 

of  X, then y ~ ( u f ( ~ ) )  ~ for some finite ~ c ~ .  (We use A ~ to denote the interior 

o f  a set A.) No separation properties are assumed. 

The class of  bi-quotient maps contains all open maps and all perfect maps. I t  

should be remarked that  Theorem 1.i is trivial for  open maps (if ~ is a point- 

* Partly supported by an N.S.F. grant. 

** Filippov actually states and proves this result with 1% (as it occurs in the definitions of 
'point-countable' and 's-map') replaced by an arbitrary infinite cardinal r. All results and proofs 
in this paper are also valid in that generality. 
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countable base for X, then f ( ~ )  is a point-countable base for Y), but for perfect 

maps the theorem seems no easier to prove than for arbitrary bi-quotient maps.* 

Our proof of Theorem 1.1 is based on the following characterization. 

THEOREM 1.2. The following properties of a space Y are equivalent. 

(a) Y has a point-countable base. 

(b) Y has a point-countable cover ~ such that, if y ~ W with W open in Y, 

then there is a finite subcollection J of ~ such that y ~ ( u ~ )  ~ and y E P c W for 

every P ~ o~. 

In Section 2 we show that  Theorem 1.2 implies Theorem 1.1, and in Section 3 

we prove Theorem 1.2. Section 4 contains some additional remarks. 

2. Proof that Theorem 1.2 implies Theorem 1.1 

Let f :  X ~ Y be a bi-quotient s-map, and ~ a point-countable base for X. 

Define ~ =f(M),  and let us show that ~ satisfies 1.2(b). 

Since f is an s-map, each f - l ( y )  has a countable dense subset, so f - l ( y )  in- 

tersects only countably many elements of ~'. Hence ~ is point-countable. 

I f  y e  W with W open in Y, thert the collection ~ '  of  all B e ~  such that 

B c f - l (g0 and B Chf - l(y) ~ ~ covers f -  l(y). Sincef is bi-quotient, y e (uf(d~)) ~ 

for some finite d o c N' ,  and now ~- = f ( 6 )  satisfies the requirements of 1.20). 

That completes the proof. 

3. Proof of Theorem 1. 2 

That 1.2(a) implies 1.2(b) is clear. To prove the converse, assume that Y has a 

covering ~ satisfying 1.2(b), and let us show that Y has a point-countable base. 

Let �9 = {ogj ~ ~ :  o~ finite}. For  later use, observe that  Y must surely be 

first-countable, for if y ~_ Y, then {(uo~)~ ~ e O, y e n  ~ }  is a countable base at 

y i n  Y. 

To motivate our construction, note that {(U ~-)~ ~ e ~} is easily seen to be 

a base for Y, but unfortunately this base need not be point-countable. To obtain a 

point-countable base, we will shrink the sets ( u  ~-)~ (for ~r ~ )  in a suitable 

fashion, as follows: 

For  each ~ - s ~ ,  let 

.////(o~) = {A c Y: A ~ (U~-)  ~ A ~  (U(8) ~ i f g  ,~ ~r}, 

= n 

�9 However, as observed by Filippov, a perfect map whose domain is Tt and has a point- 
countable base is automatically an s-map. This follows A. S. Mig~enko (4, th. 1). 
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Let 3r = {V(o~): o~" e ~}. We will show that r is a point-countable base for Y. 

LEMMA 3.1. ~ is a base for Y. 

PROOF. Let y e W, with W open in Y. By 1.2(b), there exists an o~-E �9 such 

that y e ( u  ~-) ~ c W, and we may suppose that y 6 ( u  r176 i f 8  ~ ~-. Let us show 

that y e V(o~-) c W. 

Clearly V(o~) c u ( J [ (~ ' ) )  c (t3 o~-) ~ c W. To show that y e V(o~), apply 1.2(b) 

again to pick an 5 ~ ' c ~  such that  y e ( k J # ~  ~ and y e P c ( u o ~ )  ~ for every 

Pe  ~ .  The latter property of 9o, together with the fact that y 6 (t3 8) ~ if6 ~ c 

implies that  Ped/(o*-) or every P e g .  Hence ~ c (d/t(o~)c~#),  so ( U ~ )  ~ 

c V(o~). Thus y e V(o~), and that completes the proof of the lemma. 

It remains to show that r is point-countable; that is, if ye Y then y e V(o~) 

for only countably many ~ - e r  Now if y e V(o~), then y e A  for some 

Aed/(o~-) n # ;  since y e A  for only countably many A e N ,  it will suffice to 

prove the following lemma. 

LEMMA 3.2. I f  A ~ Y, then A e .A / (~)  for only countably many ~" e~ .  

PROOF. For each n e N, let q~n = { ~  E ~:  card o~" = n}. It clearly suffices to 

show that  A e ~ ' (~-)  for only countably many ~ - e  O n. 

Suppose A e ,g(o~-) for all o~- in some uncountable ~t' ~ ~,.  Pick a maximal 

~ c ~  such that  N ~ o ~  for uncountably many ~ -eu / ,  and let ~P* 

= {~" e ~t': N ~-o~-}. Clearly 0 < card ~' < n. I f  o~- ~ ~*, then A e Jr and 

Ne on - ;  hence A r  ~ by definition of ~/(o~'). Pick y e A  such that 

Y6 ( u  N)~ Let E = Y - U ~ ,  so y eE. Since Y is first-countable, y e 2  for some 

countable Z c E. Now if ~ 'e~P *, then y e ( u . ~ ' )  ~ (since y e A  c ( u  ~-)~ so Z 

intersects some P e ~ ' .  But Z intersects only countably many P e ~ ,  and ' f*  is 

uncountable, so Z intersects some P0 e N which lies in uncountably many o~ e ~P*. 

Note that  P0 6 N, since P0 intersects Z while u N does not. Let 6" = N u {P0}. 

Then ~ ~ and ~ c  o~" for uncountably many o~eu?, which contradicts the 

maximality o f ~ .  That completes the proof of  our lemma, and thus also of  Theorem 

1.2. 

4. Further remarks 

(4.1). As the proof  shows, Lemma 3.2 is valid under the following two assump- 

tions on N and Y (both of which follow from 1.2(b)). 

(a) ~ is point-countable. 

(b) I f  y e/75 in Y, then y e Z for some countable Z c E. 
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(4.2) If Y is discrete (thus surely satisfying 4.1(b)), Lemma 3.2 reduces to the 

following result ofA.S. Mi~enko [4]: I f  ~ is a point-countable cover of a set Y 

then every A ~ Y has only countably many minimal finite covers by elements 

o f ~ .  

(4.3) Condition 4.1(b) is clearly satisfied by all first-countable spaces and is 

preserved under quotient maps [3, 8.2-8.5]. Our arguments therefore establish the 

following generalization of Theorem 1.1. I f  X has a point-countable base, and i f  

f :  X - o  y is a quotient s-map, then Y has a point-countable open cover which is 

a base at every y ~ Y where f is bi-quotient. 

(4.4) Theorem 1.2 becomes false if 1.2(b) is weakened by not requiring that 

y e P for every P e ~ .  In fact, let Y be set of ordinals [0, col], topologized by giving 

col the usual neighborhoods and making (~} open if ~ < co 1. Let ~ consist oral 1 

singletons in Y and all intervals [~, col) with ~ < co 1. Then ~ satisfies the above 

weakned form of 1.2(b), but Y is not even first-countable. 
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